oot
ko

January 1975

THE NONLINEAR NATURE OF PLANS

by
Earl D. Sacerdoti

Artificial Intelligence Group
Technical Note 101

SRI Project 3805-2

The research reported in this paper was sponsored

by the Advanced Research Projects Agency of the
Department of Defense under Contract DAHC04-72-C-008
with the U.S5. Army Research Office.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JAN 1975 2. REPORT TYPE 00-01-1975 to 00-01-1975
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The Nonlinear Nature of Plans £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 35
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

E

ABSTRACT

We usually think of plans as linear segquences of actions. This
is because plans ﬁre usually executed one step at a time. But plans
themselves are not constrained by physical limitations of linearity.
This paper describes a2 new information structure, called the procedural
net, that represents a plan as a partial ordering of actions with respect
to time., By avoiding premature commitments to a particular order for
gchieving subgosnls, a problem-solving system using this representation
can dezl easily and directly with problems that are otherwise very

difficult to solve.

I INTRODUCTION

When we think of plans in our everyday lives, or conceive of plans
for a computer to carry out, wesusuglly think of them as linear sequences
of actions. The sequence may include conditional tests or loops, but the
basic idea is still to do one step after another.

This conception of linearity is misplaced, however. When we say
plans are linear we mean that their execution is linear. Basically, a
person or a sequential computer's processor can only carry out a single
action at a time. But a plan of action is not constrained by physical
limitations of linearity. Planning and execution are distinct operations.
A plan to be executed need not have the same structure as the trace of
its execution.

It is not necessary to represent a plan as a strict ordering of
actions with respect to time. Rather, a plan may be thought of as a
partial ordering of actions with respect to time. By not making arbitrary
commitments to a particular ordering of actions during planning, a problem
solver can avoid an entire class of failure situations.

This paper will show how, for certain classes of problems, the
representation of plans as nonlinear seguences of actions enables a
problem solving system to deal eésily and directly with problems that

are otherwise very difficult to solve.

11 AN EXAMPLE
To better motivate the use of a nonlinear representation, let us

develop an elementary example. We will examine a very simple problem in

en environment that consists of three blocks and a table. 1In the initial
state, Block C is on Block A, and Block B is by itself. The goal is to
achieve a new configuration of blocks, as shown in Figure 1. It is expressed

as a conjunction: Block A is on Bldck B, and Block B is on Block C.

A

c B

A B c
Initial State Goal State

TA-740522-37

FIGURE 1 EXAMPLE PROBLEM

- There is only one action that can be applied to the blocks. PUTON
(X,Y) will put Block X on ¥. PUTON (X,Y) is not apﬁlicable unless X has
a clear top, and unless Y is the table or it has a clear top. The problem
is to develop a sequence of actions that will achieve the goal state.

This example is presented by Sussman [1] as an "anomalous situation"
for which his HACKER program could not produce an optimal solution. Other
planning programs using means-ends analysis, for example STRIPS [2] and
ABSTRIPS [3], also produce non-optimal solutions. Optimel solutions to
the problem are produced by programs of Tate [4] and Warren [5], whose
approaches will be discussed in Section VII below.

Let us see what a planning system using means-ends analysis would do
underhthe assumption that plans must be linear. It will try to achieve
in turn each of the conjuncts describing the goal state. Suppose it tried
to put A on B first. After clearing A by doing PUTON (C,TABLE), the first

2

subgoal can be achieved by doing PUTON {(A,B). But now, in order to put
B on C, B will have to be re-cleared, thus undoing the subpgoal it
achieved first.

On the other hand, the system might decide to put B on C first. This
can b; done immediately in the initiﬁl state. But now when the system
tries to put A on B, it finds it is even further from its goal than it
was in the inltial state.

So the planner 1s in trouble. It must perform a more sophisticated
analysis to put the subpoals in the proper order.

But the problem is easy to solve if plans are represented as partial
orderings. A planner can begin With an oversimplifed plan that considers
the subgoals of putting A on B and putting B on C as parallel, independent
operations. When it looks at the subplans in more detail, a simple
analysis will determine the interactions between them. Potentlal conflicts
can be resolved by imposing linear constraints on some of the detailed
actions,

In subsequent sectlions we will show how a planner that is freed

from the assumption of lipnearity is able to solve problems of thils type

directly, constructively, and without backtracking.

ITT NOAH

NOAH {(Nets of Action Hierarchies) is a problem-solving and execution
monitor;ng system that uses a nonlinear representation of plans. The system
is beiné used for SRI's computer based consultant project [6], and has many
aspects that are not directly relevant to the point of this paper. These
will be suppressed here. We wlll present a simplifed explanetion of the

procedural net, NOAH's representatlion for mctions and plans, of SOUP, the

3

language for giving the system task-specific knowledge, and of the plenning
zlgorithm. A complete discussion of the system will appear elsewhere [7].

NOAH is implemented in QLISP [8], and runs ss compiled code on a
POP-10 computer under the TENEX time-sharing system.

A, The Procedural Net

The system's plans are built up in & data structure called the

procedural net, which has characteristies of both procedural and declara-

tive representations.

Basically, the procedural net is a semantic network of nodes, each
of which contains procedural information, declarative informstion, and
pointers to other nodes. Each node represents a particular action at
some level of detail. The nodes are linked to form hierarchical descrip-
tions of operations, and to form plans of action.

' Nodes at each level of the hierarchy are linked in a partially ordered
time sequence by predecessor and successor links. Each such sequence
represents a plan at & particular level of detail.

The nodes discussed 1n this paper are of four types: GOAL nodes
represent & goal to be achieved; PHANTOM nodes represent goals that should
already be true at the time they are encountered; SPLIT nodes have a single
predecessor and multiple successors, and represent a forking of the partial
ordering; JOIN nodes have multiple predecessors and a single successor,
and represént 2 rejoining of subplans within the partial ordering.

Each node points to a body of code. The action that the node
represents can be simulated by evaluating the body. The evalustion will
cause new nodes, representing more detailed actlons, to be added to the
net. It will also update a hypothesized world model to reflect the
effects of the more detalled actions.

4

Predecessor(s) {; <—} Successor(s)

Node types .are designated as follows:

Description of action (Description of actionj S J

GOAL PHANTOM SPLIT JOIN
TA-740522-11

FIGURE 2 GRAPHIC REPRESENTATION OF A NODE

Associated with each node is an add list and a delete list. These
lists are computed when the node is created. They contain symbolic
expressions representing the changes to the world model caused by the
action that the node represents.

Figure 2 shows the graphic notation used 1in this paper to display a
node of a procedural net. .

Ag an example, let us examine a procedural net representing a
hierarchy of plans to paint a celling and paint a stepladder. The plan
can be repregented, in an abstract way, as a single node as shown in
Figure 3a. In more detail, the plan is a conjunction, and might be
represented as in Figure 3b. The more detailed subplans to achieve these
two goals might be "Get paint, get ladder, then apply paint to ceiling,”
and "Get paint, then apply paint to ladder,” as depicted in Figure 3c.

VThé plctorial representation used here suppresses much of the
information associnted with each node. The add‘and delete lists, for
instence, are not indicated in the diagrams. They are not hard to infer,
however. For example, "Get ladder” will cause "Has ladder” to be added
to the world model, and ""Apply paint to ceiling' might delete "Has paint."

Precondition~subgoal relationships are inferred by thelsystem from
pointers that indicete which nodes represent expansions in greater detail
of other nodes. These pointers are also omitted in the pictorial representa-
tionn. The system assumes that every action but the last in such an
expansion is a precondition for the last action.

B. Task-gpecific Knowledge

Knowledge about the task domain is given to the system in procedural
form, written in the S0UP (Semantics of User's Problem) language. SOUP is

6

LEVEL 1 Paint the ceilfng and paint the ladder

{al

LEVEL 2 S

/ Paint the ceiling \
~

Paint the ladder

(b}

TA-740522-12

LEVEL 3
(Before Criticism) " .
Get paint Get tadder — Apply paint to ceiling\
S _ J
\Get paint Apply paint to ladder ’/
LEVEL 3 (c)

(After Criticism
by Resolve Conflicts)

/Get paint Get ladder — Apply paint to ceiling j

S (-
\Get paint J Apply paint to ladder

(d)

TA-740522-13

% FIGURE 3 PROCEDURAL NET FOR PAINTING

Sy

an extension of QLISP [8] that is interpreted in an unusual fashion.

The process of planning transforms this procedural knowledge into the
hybrid procedural net form, which contains both procedural and declarative
informetion, and which represents s hierarchy of solutions to the partipu—
lar problem at hand.

As an example, let us examine the SOUP code for blocks problems such
as that presented in Section I1 above. The complete semantics of the
actions of this domain are expressed by two functions, which are shown in
Figure 4. The code for the function CLEAR says, "If the veariasble X is
TABLE, then it 1s elready "clear'. Otherwise, see 1f some block Y is
on X. If so, clear Y and then remove Y by putting it somewhere else.,"
The code for the function PUTON says, "To put X on Y, first clear X

and Y. Then place X on Y (and thus Y is no longer clear)'.

C. The Planning Algorithm

Initially, NOAH is given a goal to achieve, NOAH first builds a
procedural net that consists of a single goal node to achieve the given
goal. This node has a list of all relevant SOUP functions as its body.
This single node represents the plan to achieve the goal at a very
high level of abstraction. This one-step plan may then be expanded.

The planning algorithm of the NOAH system is simple. 1Its ilnput is
a procedural net. It simulatés the most detailed plan in the net by
simulating each node of the plan in turn. In additibnrto building g
detailed model of the effects of each action in the plan, the simuilation
of each node will produce child nodes. Thus by simulating the plan, a

new, more detailed plan will be created.

Figure 4

SOUP Code for the Blocks Problenms

(CLEAR
(QLAMBDA
(CLEARTOP +X)
(OR
(EQ $X (QUOTE TABILE))
(QPROG
-Y)
(ATTEMPT (PIS (ON <Y $X))
THEN (PGDAL (Clear $Y)
(CLEARTOP $Y)
APPLY
(CLEAR))
(PDENY (ON $Y $X))
(PGOAL (Put $Y on top of *Z)
(ON $Y «Z)
APPLY NIL))
(RETURN)))))

(PUTON
(QLAMBDA
(ON “X +Y)
(PAND
(PGOAL (Clemr $X)
(CLEARTOP $X)
APPLY
(CLEAR})
(PGOAL (Clear $Y)
(CLEARTOP $Y)
APPLY
(CLEAR)))
(PGOAL (Put %X on top of $Y)
(ON $X 3Y)
APPLY NIL)
(PDENY (CLEARTOP $Y))))

2

‘The individual subplan for each ncde will be correct, but there is
as yet no guarantee that the new plan, taken as a whole, will be correct.
There may be iInteractions between the new, detailed steps that render
the overall plan invalid. For example, the individual expansions involved
in generating the plan in Figure 3c from that in Figure 3b are correct,
yet the overall plan is invalid, since it allows for painting the ladder
before painting the ceiling.

Before the new detailed plan is presumed to work, the planning system
must take an overall loock at it to ensure that the local expansions make
global sense together. This global examination is provided by & set of
critics. - The critics serve s purpose somewhat similar to that of the
critics of Sussman's HACKER (1], except that for NOAH they are constructive
critics, desligned to add constraints to as yet unconstrained plans,
whereas for HACKER they were destructive critics whose purpose was to
reject incorrect assumptions reflected in the plans.

The algorithm for the planning process, then, is as follows:

(1) Simulate the most detailed plan in the procedural net. This

will have the effect of producing s new, more detailed plan.

{2) Criticize the new plan, performing any necessary reordering

or elimination of redundant operations.

{3) Go to Step 1.

Clearly, this algorithm is an oversimplificatioﬁ, but for the purposes
of this paper we may imagine that the planning process continues until
no new details are uncovered. {(In fact, for the complete problem-solving
and executlon monitoring system, a local decision must be made at every

node gbout whether it should be expanded.)

10

IV CRITICS

We are almost ready to look at some examples. But first let us
examine the set of critics. The ones described here are general-purpose
critics, appropriate to any problem-solving task. 1In addition to these,
other task-specific critics may be speciflied for any particular domain.

A. The "Resolve Conflicts" Critic

The Resolve Conflicts critlc examines those portions of s plan that
represent conjuncts to be achieved in parallel. 1In particuler, it looks
at the add and delete lists of each node in each conjunctive subplan.

If an action in one conjunct deletes an expression that 1s a precondition
for a subgoal in another conjun;t, then a conflict has occurred. The
subéoal is‘endangered because, durlng execution, 1ts precondition might
be negated by the action in the parallel branch of_the plan, {An implicit

assumption being made here is that all of a subgoal's preconditions must

remain true until the subgoal is executed.) The conflict may be resolved
by requiring the endangered subgoal to be achleved before the action that
would delete the precondition.

For example, the painting plan depicted in Figure 3c contains a

T

conflict. "Apply paint to ladder” will effectively delete "Has ladder,’

which is on the add list of "Get ladder.” In such a situation, a conflict

would occur, since ""Has ladder” is a precondition of "Apply paint to ceiling."”
The conflict is denoted in the pictorial representation by a plus sign {(+)

over the precondition and & minus sign (-) over the step that violated it.

The conflict can be resolved by requiring that the endangered subgoal
("Apply paint to ceiling") be done before the violating step ("Apply paint

to ladder™).

11

)
Tk

If the conflict were resolved in this menner, the resulting plan
would appear as in Fipure 3d.

A similar conflict occurs if an action in one conjunct deletes an
expression that is a precondition for a following subgoal. In this case,
the precondition must be re-achieved after the deleting action.

Conflicts of this type are very easy to spot. The critic simply

builds a table of multiple effects. This table contains an entry for

each expression that was asserted or denied by more thgn one nodg in the

current plan. A conflict is recopnized when an expression that 1s asserted

at some node is denied at a node that is not the asserting node's subgoal.
Note that a precondition may legally be denied by its own subgoal.

For example, to put Block A on Block B, B must have a clear top. This

precondition will bg denied by the action of puttiqg A on B.

i
i

B. The ''Use Existing Objects’ Critic

In addition to specifying the right actions in the right order, a
complete plan must specify the objects that the actions are to manipulate.
For NOAH, this specification is accomplished by binding the unbound
variables (those prefixed by a left arrow) in the PGOAL statements of the
SOUP code.

During the course of planning, NOAH will avoid binding a variable
to a specific object unless a clear best choice for the binding is avail-
able. When no specific object is clearly best, the blanner will pgenerate

a formal object to bind to the variasble. The formal object is essentially

a8 place holder for sn entity that is as yet unspecified. The formal objects
described here are similar in spirit to those used by Sussmen in his HACKER

program [1]}, and to the uninstantiated parameters in relevant operators as

used by ABSTRIPS [3].
12

The strategy of mllowing actions with unbound arguments to be inserted
into a plan has several advantages. TFirst, it enables the system to avoid
making arbitrary, and therefore possibly wrong, choices on the basis of

insufficient information. Furthermore, it allows the system to deal with

world models that are only partially specified by producing plans thet are

only partially specified.

However, after a plan has been completed at some level of detall, it
may be clear that a formal object can be replaced by some object tha;
was mentioned elsewhere in the plan. The Use ExistingVObjects critic will
replace formal objects by real ones whenever possible. This may involve
merging nodes from different portions of the plah, resulting in reordering
or parti#l‘linearization.

For example, a more detailed expansion of the peinting plan might
specify putting the ladder at Place00l to paint it; and at Under-Ceiling
for painting the ceiling. The Use Existing Objects critic would optimize

the plan by replacing Place00l with Under-Ceiling.

C. The "Eliminate Redundant Preconditions” Critic

During the simulation phase of the planning process, every precondition
thet is encountered i1s explicitly stored in the procedural net.. This is so
that the critics will be able to analyze the complete precondition-subgoal

structure of each new subplan. But after the other critics have done their

work, and the plan has been altered to reflect the interactions of all the

steps, the altered plan may well specify redundant preconditions.
For instance, in our painting example, "Get paint" appears twice in
the plan. This critic recognizes the redundancy be examining the same

table of multiple effects that was used by Resolve Conflicts. The extra

13

preconditions are eliminated to conserve storage and avold redundant

planning at more detailled levels,

v THE EXAMPLE,l AGAIN

We are now ready to see how NOAH solves the problem posed in Section II.
The initial state is expressed to the system as a set of QLISP assertions:

(ON C A)
(CLEARTOP B)
(CLEARTOP C).

NOAH is invoked with the goasl: (AND (ON A B) (ON B C)).

The system builds an initial procedural net that consists of a single
GOAL node. The node is to achieve the given goal; its body is a list of
the task-specific SOUP functions, in this case CLEAR and PUTON. It then
applies the planning algorithm to this one-step plan, which is deplicted
in Figure 5a.

The conjunction is split up, so that each of its conjuncts is
achieved independently. ©PUTON is the relevant function for achieving both
conjuncts, but the system does not immediately invoke PUTON. Rather, the
system builds a new GOAL node in the procedural net to represent each
invocation. The nodes are to achieve (ON A B} or (ON B C), and have PUTON
as their body. The original plan has now been completely simulated to a
greater level of detmil, and so the critics are applied. At this level,
they find no problems with the plan that was generated. The new plan is
shown in Figure 5b.

The new plan is now expanded. When the GOAL nodes for achieving

(ON A B) and (ON B C) are simulated, PUTON is applied to each goal

14

LEVEL 1 ' ‘
Achieve (AND(ON A B)(ON B C))

{a)

LEVEL 2

/Achieve {ON A B)\
AN Achieve (ON B C)/

(b)

TA-740522-14

LEVEL 3

{Before Criticism) Clear Al

~
w
[

’ S J Put A on B .
‘ \
2
S \ . |
\ ;'
S J Put B on C
H
(c)
TA-740522-15
LEVEL 3
{After Criticism » Clear A K . _
by Resolve Conflicts) S) Put A on B

o~

e
NI,

"Put B on C

{d)

TA-740522-16

15

LEVEL 3
. (After all Criticism)

/— Clear A . . \
S . J 4Put A on B

\ /

S J Put B on C
Clear C
{e)
TA-740522-17
LEVEL 4

(Before Criticism) +
/—<Clear C)——l Put C onOBJECT1
S \ J Put A on B
\ Clear B .-
S

_J Put B on C
-

(f

TA-740522-18

LEVEL 4
(After Criticism
by Resolve Conflicts)

+
/—(Clear C)— Put C onOBJECT 1
S 4 - Put A on B
(e ——

J —4Put B onC

{q)

TA-740522-19

LEVEL 4
(After all Criticism)

&Clear (9— Put C onOBJECT 1 \
. ~

{h)

J M4Put B on C--PutAroan

TA-740522-20

16

expresslon. PUTON causes the generatlion of a new level of GOAL nodes. When
the entire plan has been simulated, the resulting new plan appears as in
Figure 5c. The nodes of the plan are numbered to ald in explaining the
actions of the crities.

The critics are now applied to the new plan. Resolve Conflicts
generates a teble of all the expressions that were agserted or denigd more
than once during the simulation. The table is shown in Figure 6a. This
table is then pared down by eliminating from consideration those%precondi-
tions that are denled by their own subgoals., For exampie, (CLEARTOP C) 1is
a precondition for the subgoal (ON B C), so it is not a conflict that
achleving (ON B C) at Node 6 mekes (CLEARTOP C) fmlse, Now, any expression
for which there is only a single remaining effect is removed from the table.
The resulting table, shown in Figure 6b, displays all the conflicts created
by éhe assumption of nonlinearity.

Resolve Conflicts now resolves the conflict by reordering the plan
to place the endangered subgoal [the node achieving (ON B C)] before the
violating step [the node achieving (ON A B)]. The transformed plan is
gshown in Figure 5d.

Since no formal cbjects were generated at this level 6f detail,

Use Existing Objects does not transform the plan further. Eliminate

Redudant Preconditions is now applied, and the resulting plan is shown
in Figure 5e. Note that the mejor restriction in the solution to the
problem, that B must be placed on C before A is placed on B, has been
incorporated into the plan, This has been accomplished directly, con-

structively, and without backtracking.

17

Table of Multiple Effects for Example Problem

Figure 6

(Node numbers refer to Figure 5c.)

CLEARTOP B:

CLEARTOP C:

CLEARTOP B:

68 - Original Table

Asserted - Node 2 ("'Clear B")
Denied - Node 3 ('Put A on B")
Asserted - Node 4 (''Clear B")
Asserted - Node 5 (''Clear C™)

Denied - Node 6 ("Put B on C'")

6b - Refined Table
Denied - Node 3 ("Put A on B")

Asserted - Node 4 (''Clear B')

18

The critics having been applied, the system simulates the new plan.
This results in the generation of a new, yet more detailed plan, shown in
Figure 5f. The critics are then applied. An analysis similar to that
described above enables Resolve Conflicts to discover that (CLEARTOP C)
might be violated when achieving (ON B C). Thus, the plan is rearrangeﬁ,
as shown in Figure 5g, so that (ON C Objectl),-the endangered subgoal, is
achieved before (ON B C).

Use Existing Objects again finds no formal objects that can .be
unified with existing ones. After Eliminate Redundant Preconditions
cleans up the plan, it appears as in Figure 5h. The fingl plan is: Put
C on Objectl; Put B on C; Put A on B, The total time required to produce
the plan Qas 26 seconds. Essentially, the plan is now completely linearized.
The planning system has chosen the correct ordering for the subgoals, without
backtr#cking or wasted computation. By avolding a.premature commitment to
a linear plan, the system never had to undo a rﬁndom choice made on the

basis of insufficient information.

VI OTHER EXAMPLES
In this section a number of other blocks world examples will be
presented. The problems and their solutions will be displayed graphically,

and only points of special interest will be discussed in the text.

19

A, Four Blocks

A
B
c D c
A B D
Initial State: Goal State:
{ON C A) {AND{ON A B)
(ON D B) {(ON B C)
{CLEARTOP C) (ON D C))

(CLEARTOP D)
TA-740522-28

LEVEL 1 Achieve (AND(ON A B){ON B C){ON C D)

The conjunctive goal is split into parallel goals,

/ Achieve {ON A B)

LEVEL 2 S Achieve (ON B C) J

Achieve {ON C D)

TA-740522-29

20

LEVEL 3

(Before Criticism) Clear A

S J Put A on B
Clear B

e
I
|

L/ Clear B
S s [J FqPut B on C J

++

Clear C

J

PutCon D

TA-740522-30

Resolve Conflicts notices two cases of a precondition (+) negated

by a parallel operation (-).

LEVEL 3
{After Criticism Y Clear A N B
by Resolve Conflicts) S 3 Put A on B
N
Clear B <-
A
/ Clear B N —_
S S J r—Put B on C
Clear C

++
J MPutCon D

TA-740522-31

21

Eliminate Redundant Preconditions cleans up the plan.

LEVEL 3
{After all Criticism)

Clear A

~
j

Put A on B

Clear B

Put B on C

J Put C on D

F

TA-T40522-32

LEVEL 4
(Before Criticism)
+
Cleaf)—J Put C on OBJECT1
++ — : J Put A on B

Put D on OBJECT2 : -

5 J Put B on C
-
J Put C on D

O
)
oy
=
=

TA-740522-33

LEVEL 4
{After Criticism
by Resolve Conflicts)

Clear C)— Put C on OBJECT1

/(Clear D)— Put D on OBJECTZ
: —)

/
J —Put C on D

Put A on B

J tPut B on C

TA-740522-34

22

Use Existing Objects notices that the plan can be simplified by
unifying the formal object, Objectl, with Block D, The nodes which refer

to putting C on D and Objectl are merged.

LEVEL 4
(After Criticism
by Use Existing Objects)

Clear C

ACIear D}— Put D on OBJECTZ?

Put A on B

Put B on C

=9

J Put C on D

TA-740522-35

LEVEL 4
{After all
Criticism)

/<Clear D)— Put D on OBJECT?2 \
'{ Clear C ; /

J MPut C on D—Put Bon C—~Put Aon B

TA-740522-36

The finel plan is: Put D on Object2, Put C on D, Put B on C, Put A

on B, The total time to generate the plan was 41 seconds.

23

B, LCreative Destruction

This problem can only be solved by undoing a subgoal which is

already achieved.

i A
A B
B C C
Initial State: (Goal State:
(ON A B) {(AND(ON A B)
{CLEARTOP A} {ON B CH

(CLEARTOP C)
TA-740522-21

LEVEL 1 Achieve {AND{ON A B)ION B C))
/(AChIEUE {(ON A B) >\

LEVEL 2) J
\ Achieve {ON B C)

TA-740522-22

The first conjunct is a PHANTOM goal, since it is already true in

e the initiel world model.

24

LEVEL 3 . +
{Before Criticism) Achieve (ON A B)

/ Clear B J
] '] J — Put B on C

TA-740522-23

Resolve Conflicts notices that one node {(-) deletes a precondition

for a subsequent subgoal. The precondition 1n this case is (ON A B),

5
o

and the subgoal 1s the 1nitial conjunctive goal. The system therefore
alters the PHANTOM goal (+) to become a genuine goal, to be achileved

in time for the subsequent subgoal.

3 LEVEL 3 +

(After Criticism) /7 Achieve (ON A B}

Clear B \
S J Put B on C /

TA-740522-24

25

LEVEL 4
{Before Criticism)

Clear A
/ S J Put A on B

3

/

Clear B

—
[A

Clear A Put A on OBJECT1

I AN

P,

Put B on C

/

Clear C

:

TA-740522-25

Resolve Conflicts notices that (CLEARTOP B) is asserted by one node

(+) and deleted by another (-). It therefore recrders the plan.

LEVEL 4
{After Criticism
by Resolve Conflicts)

Clear A

/ Clear B /C

-

+
\ Clear A }—Put A on OBJECT‘I\

(Clear C }

w

J Put A on B

f 3

Put B on C

[02]
—

TA-740522-26

26

Eliminate Redundant Preconditions cleans up the plan.

LEVEL 4
{After Criticism)

/(Clear A)— Put A on OBJECTI1 \ .

5 J Put B on C Put A on B

{ Clear C J— /

TA-740522-27

The final plan is: Put A on Objectl, Put B on C, Put A on B. The

total time to produce the plan was 26 seconds.

27

VII DISCUSSION

We have seen how a varlety of problems which can be represented as
conjunctive goals have simple, straightforward sclutions in NOAH. There
are a number of other problem-solving systems that use alternative approsches
to solve similar problems. Among these are Sussman's use of debugging
[1,9], Tate's search in a space of "tick lists" [4], and the approach of
passing actions backward over a partial plén, which is used by Menna and
Waldinger [10] and Warren [5].

The approach presented in this paper is in many ways antithetical to
that of Sussman's HACKER. HACKER attacks conjunctive goalslby making a
"linear'" assumption. That is, conjunctive goals are assumed to be
independent and additive, and so to achieve the overall goal each conjuncf
may be achieved in sequence. The system 1s explicitly aware of this assump-
tion. If the developing plan fails, it can be debugged by comparing the
problem that occurred with the known types of problems generated by the
assumption of linearity. A4s bugs are encountered and solved, a collection
of crities is developed, each of which notices that a certain type of bug
has occurred in a plan.

HACKER does a lot of wasted work. While the problem solver will
eventually produce a correct plan, it does so in many cases by lterating
through a cycle of building a wrong plan, then applying all known critics
to suggest revisions of the plan, then building a new {(still potentially
wrong) plan.

NOAH makes no rash assumptions, but preserves all the freedom of
ordering that is implicit in the statement of a conjunctive goal. It

assumes that conjuncts are independent, but the nonlinear representation

28

frees it from worrying about additivity. It applies its critics con-
structively, to linearize the plan only when necessary. By waiting until
it knows the nature of the conjuncts' interactions, NOAH is sure to place
actions in the correct order, and thus needs never undo the effects of é
false assumption.

Tate's INTERPLAN performs a search for a correct linear ordering by
using both debugging and backtracking. INTERPLAN does this not by creating
alternative sequences of actions, but rather by examining a tabular
representation of the interactions between conjunctive goals. Tate
demonstrated that a planner can perform reasoning about plans by dealing
with information that is much simpler than the plan itself. This concept
has been used extensively by the critics in NOAH, which do much of their
analysis on the tables of multiple effects rather than on the plans them-
selves.

Manna and Waldinger and Warren build linear plans in non-sequential
order. They reguire that the partial plan at every stage be a linear one.
However, they allow additions to the plan by insertion of new actions into
the body of the plan, rather than restricting new actions to appear at the
end. This approach has the advantage of being constructive, in the sense
that when the planner adds each step to the plan, it takes into account
all the interactions between conjuncts that it knows about. But by forcing
the plan to be linear at all intermedgéte stapges, these planners must do
unnecessary search with backtracking, or sophisticated plan optimization

to find the correct order in which to attack the conjuncts.

29

VIII FURTHER WORK

This paper deals with a deceptively simple idea: &a plan may have
the structure of a partial ordering, even though its execution might have
to he structured as a total ordering. The planning system described hefe
is primitive and incomplete, and a more complete one will be required to
fully explore the implications of this representation of plans. The
system does not now deal with disjunctive subgoals (for example, to paint
the ceiling, get paint and either & ladder or a table). The simplicity
of the critics' analysis of the tables of multiple effects breaks down
for disjunctive situations. It appears that a search process in a space
of alternative tables, such as Tate uses for conjunctive goals, would
enable the system to deal with disjuncts.

The current system also fails to deal with what might be termed ''mon-

" These are interactions between subgoals

linearizable interactions.'
where no simple ordering of the actions that achieve each subgoal inde-
pendently will achieve the overall goal. An example of this type of
interaction arises in the problem of exchanging the contents of two
registers. There is no linear order in which the steps of putting the
contents of Rl in R2, and the contents of R2 in Rl, will produce a valid
plan. The problem solver must suggest the creative step of putting the
contents of one register in temporary storage.

This is not as difficult as it appears. An analysis of the table
of multiple effects can reveal the non-linearizable nature of the inter-

action. An analysis of the computations that resulted in the multiple

effects can suggest how to make each interacting subplan innocuous to the

30

R
ik

=

others by inserting the appropriate actions in each subplan. Inserting
these new actions is the creative step alluded to in the precediqg
paragraph,

The most serious deficiency in the current system is its lack of
awareness about the auxiliary computations specified in the procedural
semantics (the SOUP code) of a task domain. The procedural net representa-
tion lets the system be aware of the goals and subgoals that the planner
has decided to tackle, but it does not preserve any information about the
computation that resulted in those decisions. In some cases, a reordering
of subgoals might alter the state in which one of these computations would
be carried out. Then the computation might produce different results.

There are two ways in which the deficiency could be dealt with. One
approach would be to restrict the complexity of the SOUP code that
specifies the actions of a task domain.

However, if NOAH is to be effective in truly complex domaing, SOUP
must have all the richness of a PLANNER-like language [11], and the system
must be aware of this new type of interaction. This can be done hy allowing
the entries in the tables of multiple effects to specify a computation as
well as a simple expression. The computation, evaluated at the time a
critic is analyzing interactions, would reflect the effects of the currently
postulated order of subgoals.

The solutions to the prohlems raised in this section will surely alter
the particular problem-solving strategies that were adequate for the simple
examples discussed in this paper. The problems do not threaten the usefulness
of the nonlinear representation for plans, and may in fact be best solved

by relying on such a representation.

31

ACKNOWLEDGEMENTS
The ideas presented in this paper have been stimulated and
sharpened by discussions with Richard Waldinger, Richard Fikes, Nils

Nilsson, and Austin Tate.

Y
4

£
R

32

REFERENCES

1. G. J. Sussman, "A Computational Model of Skill Acquisitionm,’
Technical Note AI TR-297, Artificial Intelligence Laboratory,
MIT, Cambridge, Massachusetts (August 1973).

G

2, R, E. Fikes and N, J, Nilsson, ''STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving," Artificial
Intelligence, Vol. 2, pp. 189-208 (1971).

3. E. D, Sacerdoti, "Planning in a Hierarchy of Abstraction Spaces,”
Artificial Intelligence, Vol. 5, No. 2, pp. 115-135 (1974),

4. A. Tate, "INTERPLAN: A Plan Generation System which can deal
with Interactions between Goals," Memorandum MIP-R-109, Machine
Intelligence Research Unit, University of Edinburgh (December
1974).

5. D. H. D. Warren, "WARPLAK: A System for Generating Plans,”

Memorandum No. 76, Department of Computational Iogic, University

of Edinburgh (June 1974),

6. P, E. Hart, "'Progress on a Computer-Based Consultant,” submitted
to IJCAI4.

7. E. D, Sacerdoti, "Solving Problems and Monitoring Execution using
a Highly Structured Representation for Actions," forthcoming Ph.D.
thesis, Stanford University.

8. R. Reboh and E, D. Sacerdoti, "A Preliminary QLISP Manual," Technical
Note 81, Artificial Intelligence Center, SRI, Menlo Park, California
(August 1973).

9. G. J. Sussman, "The Virtuous Nature of Bugs,' Proc. AISB Summer
Conference (July 1974).

10. Z. Manna and R. Waldinger, '"Knowledge and Reasoning in Program
Synthesis,” Technical Note 98, Artificial Intelligence Center, SRI,
Menlo Park, California (November 1874),.

11. D. G. Bobrow and B. Raphael, "New Programming Languages for Artificial
Intelligence', Computer Surveys, Vol. 6, No. 3 {(September 1974).

Y
s

33

